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Abstract 
Background: There is a comprehensive research 
focusing on the vascular events and the 
pathophysiology of stroke. Less focus has been 
on the events in the individual cells when their 
metabolism is compromised. The cells try to 
repair damaged energy producing structures in 
the mitochondria with tools that themselves 
require energy to function properly. 
Results: The analysis describes a biosimulation 
model, where the ATP-producing enzymes (the 
energy cogwheel) and the enzymes repairing 
the cogwheel are taken as two variables. The 
interplay between these two variables reveals 
an extremely sharp borderline between cell 
death and cell survival after a damage. Its value 
depends on the size of the damage, cell 
metabolism, and the dynamics of the damage. 
Conclusion: The results point out several 
procedures that could minimize the damages at 
a single cell level. Further analysis is needed to 
combine the vascular research with the single 
cell findings.  
Key words: Biosimulation, stroke, cell damage, 
cell energetics, ATP control, butterfly effect.  
 
Introduction 
Stroke is a cerebral event caused by insufficient 
perfusion of parts of the brain, like vessel 
thrombosis, bleeding, or arterial spasms. 
Common for the events is that part of the brain 

cells become hypoxic and risk serious damages, 
if the blood flow is not rapidly restored.  
   Therefore, the study of stroke is focusing on 
the vascular damages leading to nerve cell 
injury and the more general effect on the tissues 
(Crabbe 2007, Madia et al. 2024, Rehman et al. 
2024, Salaudeen et al. 2024).  
   Most brain metabolism goes to maintain the 
concentration gradients of sodium, potassium, 
and calcium ions, both during rest and during 
brain activity. The nerve cells of the gray matter 
are unmyelinated, thin with a high surface- 
volume ratio, and the many synapses require 
large amounts of energy. Consequently, the gray 
matter is very sensitive to energy shortage. 
   Damages after stroke are often assumed to be 
due to insufficient restoration of the blood flow. 
   The paper presents another effect of stroke on 
a cellular level, where small differences in 
timing and severity of the stroke and in the 
cellular activity may have fundamental 
influence on the outcome. It can be compared to 
the butterfly effect in nonlinear dynamics 
(Lorenz, 1972: Does the flap of a butterfly’s 
wings in Brazil set of a tornado in Texas?).  
    The analysis presents the results of a relatively 
brief closure of the blood flow to a part of the 
brain. With an ischemia of this duration, many 
patients survive the ischemia, but they may 
develop necrosis in parts of the brain.  
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The energy cogwheel 
The energy flow in the cell from nutrient 
breakdown to energy usage follows a series of 
steps that are interwoven like cogwheels. 

1. Krebs cycle: Nutrients are broken down in the 
cytoplasm, pass into the mitochondria, and 
enter the TCA cycle as acetyl-CoA. Here they are 
broken down to CO2 and H2O. The energy is 
released as NADH and FADH2 that moves to the 
electron chain in the mitochondrial membrane.  
 2. Electron chain: Electrons are released and 
transported via large enzymatic complexes, and 
combined with molecular oxygen, O2, to give 
water. It is here oxygen is needed to extract the 
energy. The intermediate species, free radicals 
with an unpaired electron, are very reactive and 
destructive, almost like radioactive radiation.  
3. Proton potential: The electron chain uses the 
liberated energy to pump protons, H+, out of the 
mitochondrion. This creates a large membrane 
potential difference 150 mV. The potential 
varies with nutrient and oxygen supply, and 
energy utilization. The electric potential 
difference is used as a battery to build ATP. 
4. ATP buildup: The mitochondrion has an extra, 
modified proton pump, ATP synthase, where 
protons can flow inwards due to the potential 
gradient. Inside, there is a propel-like 
mechanism that can convert the electric energy 
and catalyze the reaction ADP+P+energy → ATP. 
(Nath and Jain, 2000) Thereby, internal ADP is 
converted to ATP that flows out through an 

ATP/ADP transporter in the mitochondrial 
membrane.  
5. ATP usage: The synthesized ATP is trans-
ported out to the cell cytoplasm and diffuses to 
the organelles that require energy (e.g., muscles, 
glands, and particularly pumps). Her ATP is 
reduced to ADP that diffuses back to the 
mitochondrion for reloading of energy.  
   The cogwheel system: The 5 steps are tightly 
bound together. In steady state, there is a 
synchronous rotation of the cogwheels with a 
flow from top to bottom. Three cases may be 
highlighted. 
   One is an increased level of nutrients. In a 
normal chemical reaction, this would lead to an 
increased reaction rate through all the steps. But 
the speed of the last cogwheel must follow the 
energy utilization precisely, so if the workload is 
small, all the cogwheels will be in a “push” 
position. Especially in the electron chain this can 
create reactive oxygen species (ROS) that can 
damage the cell. 
   Another case is a heavy workload on the cell, 
where the ATP production is limited by 
insufficient nutrition. This gives a “pull” 
situation, where the energy usage depends on 
the ATP production. The cell may produce a 
limited amount of ATP by glycolysis, but this is 
rarely sufficient (Arunachalam et al. 2023). 
   The third case is relevant for stroke. During 
hypoxia, the complex setup of the interwoven 
cogwheels may be disturbed or even destroyed. 
And the malfunction of just one cogwheel may 
stop the whole chain. The result is that the ATP 
production is reduced until the cogwheels are 
repaired or replaced. This takes time, during 
which the shortage of ATP adds to the damages. 
To this comes that the repair itself is ATP-
dependent. 
 
Model layout 
The events taking place during ischemia are 
numerous, and it is not possible to point out a 
single factor that causes the damages. Many 
complex models have been presented, e.g., 
Kumer and Jafri (2022), but here a simple 
biosimulation model is used.  
   The design of the model is based upon the 
following assumptions: 

Fig. 1. The energy cogwheel. 
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• The function of the cogwheel is mostly ATP-
independent. In case of a brief ischemia, it is 
more or less intact, but ischemia destroys 
part of the sensitive organelles, enzymes etc., 
and ion pump failure may change the 
intracellular ion milieu considerably. 

• In the hours after the ischemia, the break-
down of metabolic enzymes may be faster 
than their reproduction, so the amount 
decreases. At the same time, the damaged 
structures are repaired, which leads to an 
increase in the production capacity (Liu et al. 
2018, Prashar et al. 2024). This balance 
between breakdown and renewal is the back-
bone of the model. 

• Both the production of the metabolic 
enzymes and the reparation of the damaged 
structures costs energy. As the amount of 
metabolic enzymes decreases, the cell 
metabolism also decreases. This leads to a 
slower restoration and sharpens the acute 
borderline between cell death and recovery.  

 
A thorough description of the model and the 
normalization of the variables is given in the 
appendix. Here only the normalized model is 
regarded. 
   To simplify, the energy-rich substances (ATP, 
PCr etc.) are treated as one: ATP, and the energy-
low as one: ADP. With constant nutrition level, 
the ATP production of the cell depends on the 
number of mitochondrial sites, E, (cogwheel 
sets) and their rotation speed. While the 
number of active sites may change after the 
hypoxia, the rotation speed depends mainly on 
the energy use D (cogwheel 5). 
   As described in the appendix, the balance 
between cogwheel 4 and 5 determines the 
A=ATP/ADP ratio that is used as a measure of 
the cell’s energy state, so with normalized 
values and  as a constant: 

    𝐴 =
𝐴𝑇𝑃

𝐴𝐷𝑃
=

𝐸∙(1−𝜀+𝜀∙𝐷)

𝐷
                                (1) 

 The breakdown and repair of E is described by 
the equation: 

              
𝑑𝐸

𝑑𝑡
= 𝑘𝛼 ∙ (𝑀(𝐴) ∙ 𝑄 − 𝐸),                             (2) 

where Q is the amount of enzymes etc. that 
repair the cogwheel, k is a rate constant, and 

M(A) is a function that describes the energy 
dependence of the Q-activity.  
   The Q represents the control system that keeps 
the cogwheel sites and the mitochondria 
functioning according to: 

      
𝑑𝑄

𝑑𝑡
= 𝑘𝛽 ∙ (𝑀(𝐴) ∙ 𝐹(𝐴) − 𝑄),                         (3) 

where F(A) is a negative feedback function, and 
k is a rate constant, and where  

     𝑀(𝐴) =
(1+𝐾𝑛)∙𝐴𝑛

𝐾𝑛+𝐴𝑛 ,                                                        (4) 

      𝐹(𝐴) =
1+𝐾𝑛

𝐾𝑛+𝐴𝑛,                                                       (5) 

   M(A) is a high order saturation function, which 
is 1, for A=1. F(A) is taken to use the same order 
and ensures that a high A gives a small feedback 
and small A, a high feedback. Other parameters 
are K=0.7, n=7, k=0.5 h-1 and k=0.25 h-1. The 
constants represent a large spectrum of time 
scales and could be larger or smaller (Yakes and 
Houten, 1997), but with the simple system of 
two differential equations, it just corresponds to 
a scaling of time. The variable D is assumed not 
to be influenced by the small energy demand for 
the production of E and Q, but it may vary with 
time due to other metabolic events in the cell. 
 

Results. 

Part I: D=1.  

A common way to analyze a nonlinear system is 
to plot the nullclines, i.e., the curves, where the 
derivative of one of the variables is zero. Fig. 2 

Fig. 2. The nullclines for the two variables with the 3 
related fixpoints. 
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shows the relation between E and Q for dE/dt=0 
(eq. 2, blue) and that for dQ/dt=0 (eq. 3, red). 
   The two curves have 3 intersections. The first 
(1,1), green, is the stable, basic state, where the 
cell is functioning normally. The second (0,0), 
red, is also stable, but here the cell is irreversibly 
destroyed.  
   The third (0.58, 2.44), blue, is special. It is a 
possible, steady solution, and the cell could, in 
principle, stay there forever. But any small 
perturbation will grow in time and move the 
system away from the unstable point to end up 
at one of the two stable points. 
   The system starts at the green, stable point, 
and after 1h, the Q is suddenly reduced to a 
lower value, whereafter the system continues on 
its own. Fig. 3a shows E as a function of time  
for a reduction in Q going from 1.0 (Q=0, 
darkest blue) to 0.05 (Q=0.05, darkest red) in 
steps of 0.05. 
   In the recordings with a high reduction (blue), 
the value of E goes down to zero within a few 
hours, while those with smaller reduction 
(green to red) returns to the basic state after 
some oscillations.  
   The border between the two fates is sharp, 
which is demonstrated with the two red curves 
in between. For the upper curve, the reduction 
in Q is 0.77987727139093593, while it in the 
lower curve is 0.77987727139093594, a 
difference of 1.28x10-17. 
   The distinction between the two fates is more 
than razor sharp. Taking a razor blade of 0.2 
mm, the found difference corresponds to an 
edge thickness of a factor 2.5x10-21 m. An iron 
atom has a radius of 126 pm or 1.26x10-10 m. so 
the threshold is some 50 billion times smaller 
than a single ion atom. In this context, the flap of 
a butterfly’s wings feels like a tornado.  
   Fig. 3b shows the fate of Q under the same 
circumstances. Here Q rapidly moves from its 
reduced value back to the basic value or even 
above this. Again, the blue curves end up at Q=0, 
and the green to red curves at Q=1. 
   More surprising is the behaviour of the two 
borderline cases. Again, they follow each other 
in the beginning and reach up close to the Q-
value, 2.44, of the unstable fixpoint, before they 
both decline. One goes towards zero. The other 
ends at Q=1 after some oscillations.  

   Fig. 4 shows a phase diagram of Fig.3a and 
Fig.3b, where Q is plotted as a function of E. The 
colour spectrum is clear with a distinct 
difference between stable and unstable cases. 
   The borderline cases go from the almost 
common value at E=1 up to the unstable blue 
fixpoint, where it divides in an unstable case 
going down left to zero and a stable case going 
to the right and ending at the green, stable 
fixpoint. The broken, black line from E=1 to 2, 
marks the continuation of the border between 
initial values of (E, Q) that leads to the red zero 
fixpoint and those leading to the green, basic 
fixpoint.  The continuation of this is the red line 
going to the unstable fixpoint and continuing 
upwards following the blue nullcline.   

Fig. 3 (a): The value of E as a function of time after 
reduction of Q from 1 (darkest blue) to 0,05 (darkest 
red) in steps of 0.05. The broken, black line 
corresponds to the E-value at the unstable fixpoint 
(0.58,2.44). (b):  The value of Q as a function of time 
like Fig.3a. The broken, black line shows the Q-value 
at the unstable fixpoint (0.58,2.44). 
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    In this way, the Q-E plane is divided into two 
regions: One, the lower left, leading to the red, 
zero fixpoint, and another, the higher right, 
leading to the green, stable fixpoint. Hence, the 
precise type of mitochondrial damage is crucial 
for the chances of cell survival. 

   The division is shown in Fig. 5. The system is 
started up with a random value of the initial E 
and Q. The values leading to the red point are 
depicted as red points with a line that shows the 
movement of the phase plot for these values. 
Similarly for the green curves that go to the 
green point. 
   Notice that solutions starting near each other 
continues to be near, and a solution starting on 
top of another line, follows it to the end. And 
none of the curves cross the black borderline.  

 
Part II:  D  1 
   When D differs from D0, the functions M(A) 
and F(A) depend in a different way on E, so the 
phase plot corresponding to Fig. 2 changes as 
shown in Fig. 6.  

   Generally, the curves move to the right and 
broaden with increasing D, but at the same time 
the curve dE/dt=0 moves upwards, so two of the 
steady state solutions move upwards, while the 
last point (E=0, Q=0), remains constant. For 
large values of D, the two curves do not 
intersect, so the only steady solution is (0,0). It 
is also seen that for D=10, both the points above 
zero are unstable, so also here the only solution 
is (0,0). 
   The broken black curves show the sharp 
borderline between solutions leading to the red 
or green points. For D=0.3, the area leading to 
(0,0) is small, and even with Q=0, the cell can go 
back to the stable point, if E>0.285. The case for 
D=1 has been shown before. A large part of the 
plane is safe, but E must not be too small (>0.53), 
and a Q>0.171 is in all cases necessary to go 
back to (1,1). 
   For D=3, the borderline is particular. The 
stable area covers a limited part of the phase 
plot. The remainder is unstable. This means that 
a cell operating with D=3 is somewhat stressed 
and vulnerable. A small perturbation may bring 
the system outside the stable area, whereafter it 
will move to (0,0). For D=10, there is only one 

Fig. 4. Phase diagram with Q as a function of E from 
Fig.3a and 3b. For details see text. 

Fig. 6. Phase diagram with different values of D as 
indicated on the figure. Broken lines show the 
corresponding border lines. 

Fig. 5. Separation of the plane. A random set of initial 
values (points) followed by lines either to the green or 
the red point. 
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stable point (0,0), and no borderline. From 
anywhere in the phase plane, the system ends 
up at (0,0). 
   So, if the system is started close to a stable 
solution, it will move to that stable solution and 
stay there. If it is started at a state corresponding 
to the borderlines or an unstable solution, any 
small disturbance will move the system away 
from this state to a stable solution, so these 
states represent unstable solutions.  
   The path towards (0,0) is special. The cell is 
destroying more of the enzymes, E, than can be 
rebuild by the enzymes Q, so both E and Q go 
down. As the reason is the constant, too large 
drag on the metabolism that prevents the 
enzymes to be rebuild fast enough, the cell may 
– in some cases – try to save itself by reducing 
the energy consumption and the damages that 
follow the enlarged metabolism. 
   The effect of reduced energy consumption is 
demonstrated on Fig.7a. Here the cell is started 
with D=1, but after 4 h, D is reduced to 0.3. The 
thin, black line shows the borderline for D=0.3. 
The upper curves, red to green, move in the 
beginning back to the steady point, but 
thereafter they move to the stable point for 
D=0.3. The lower curves, blue to green, move 
differently. The two first blue curves and up at 
(0,0). The explanation can be seen from the 
black points that correspond to time 5 h, where 
D goes from 1 to 0.3. The first two points show 
that the curves have passed the borderline, 
before D is reduced. For the following curves, D 
is 0.3 before the borderline is passed, so they 
return, first towards (1,1) then to the stable 
point corresponding to D=0.3. 
   The third curve moves for 1-2 hours along the 
borderline before it moves back and ends up 
saved. Again, this shows the importance of the 
borderline. If the system crosses the line, it ends 
up at zero, but if it does not, it can end up saved, 
even if it has passed the borderline for D=1.  
   Fig.7b shows how the red and green curves 
have time to move back to the steady point, E=1, 
before D is reduced, and they move down to the 
steady point for D=0.3. Hence, the sequelae of a 
stroke can to some extent be reduced by 
reducing the energy drain of the cell. After the 
acute phase, the system can slowly be brought 
back to normal state with limited damages. 

   So, the cell responds to an increase in the 
energy demand by increasing E and Q. This 
ensures a relatively constant ATP concentration, 
so other processes than the energy demanding 
process can run. The cell can sustain a rather 
large energy demand, but it becomes 
increasingly vulnerable as the demand 
increases. If the demand is too large, the cell 
dies. 
 
Part III: Varying D 
Constant change rate: First the effect of a 
step/ramp change in D is considered. In the 
present case, the drain is changed at a constant 
rate from the initial value of 1 to 3 and held 
there. The rate is characterized by the time it 
takes to go from D=1 to 3. 
   This is shown on Fig. 8. Both the initial and the 
final state are stable, but if the change is too fast, 
the cell cannot adjust E and Q in time to prevent 
cell death. In the figure, the slope is going from 
0.01 h-1 (dark red) to 0.2 h-1 (blue) in steps of 
0.01 h-1, corresponding to an increase in D from 
 1 to 3 in 100 or 5 h, respectively. 

Fig. 7a and 7b. The system starts with D=1 and the same 
reduction in Q as before, but D is reduced to 0.3 a 5 h. 
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   If the change is slow, the stable state is reached, 
eventually after some damped oscillations. If the 
change is very slow, the path will be an almost 
straight line between the two points, but even 
with a duration of 100 hours, there is some 
irregularities due to the oscillatory nature of the 
system. 
   The edge between the two states is again more 
than razor sharp. Here the two red curves are 
drawn with a rate of 0.13757772 h-1 or 
0.13757773 h-1 as indicated on the figure. The 
limiting duration is near 7.27 hours, and again 
the limit is very acute. The limit depends on both 
the initial and the final drain value.  

    Note that there is no loss due to ischemia. The 
problem is instead to adjust the values of E and 
Q to the increasing burden. 
 
Diurnal variations: When a dynamic system is 
forced by an outer oscillation, complex resonant 
or chaotic patterns can occur, if the system has 
some inborn tendency to oscillate with a 
frequency in the same order of magnitude as the 
forcing frequency. And as demonstrated earlier, 
the system has a tendency to show damped 
oscillations with a period of 10 hours, which is 
almost 50 % of the diurnal period.  
   Diurnal variations are present both in the 
general metabolic rate and in the concentration 
of most hormones, and the same is the case for 
the metabolic drain on the nerve cells. 
   With the acute borderline between necrosis 
and survival, even small variations in the energy 
drain are important. To this adds the marked 
sensitivity for disturbances, so it must be 
expected that the threshold for necrosis shows 
considerable diurnal variations. 
    This is demonstrated in Fig.9. The system is at 
a “steady state” driven by a sinusoidal 24 h 
variation in D from 0.5 to 1.5. The resulting 
relation between E and Q is shown in all phase 
plots as the irregular closed, dark red curve in 
the middle. The black line demonstrated the 
phase plot of D.  
     At a given clock time, 0, 6, 12 or 18 h, the value 
of Q is suddenly reduced in the same fashion ad 
in Fig. 4. It is seen that the outcome is strongly 
dependent on the time of day, or rather the value 
and behavior of D. 
   In the first case (00:00), D is low, so in most 
cases, the cell will survive, particularly those 
that manage to get back to the steady curve, 
before D is increased too much. In the second 
case (06:00), the heavy load of the large D and 
even more the increasing D gives a limited 
survival. In the third case (12:00), D is at its 
highest, but decreasing from now on, so the 
survival is higher. Finally, in the fourth case 
(18:00), the stroke takes place at a time, where 
D is medium, and where it is rapidly decreasing, 
so all cases are saved. 

Fig. 8. The system is starting in the basic state. After 1 h 
D is increased linearly from 1 to 3. The colours are now 
displaying the change rate from 0.2 h-1 (blue) to 0.01 h-1 
(dark red). 
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        The behavior is a result of several factors. 
The cell is sensitive to increases in D but not to 
decreases, so this alone creates an asymmetry.  
   It must be underlined that the model is very 
simple and that the variations in Fig. 9 most 
probably are too large. A closer analysis of the 
system kinetics combined with experiments is 
necessary to reveal the exact magnitude of the 
diurnal susceptibility variations, and the 
magnitude of D prior to the ischemia influences 
the magnitude of E and Q at the time of the 
ischemia. The damages due to the ischemia will 
change both Q and E.  
   So, there is an interplay between the drain 
variations and the inborn oscillation tendency of 
the system. As the system is easily agitated, 
continued drain variations can give rise to large 

transient responses that dominate the system 
behavior.  
 
Discussion. 
   A common theme through the analysis is the 
behavior of the energy cogwheel. Many control 
systems are present in the cell and its 
mitochondria, but the main control is the strong 
and often overlooked synchronization of the 
different steps from nutrients to work - at least 
on average.  
   In this sense the variable E is complex. Some of 
the cogwheels are distributed like the proton 
potential, the ATP and ADP, while others like the 
enzymes in the Krebs cycle and the electron 
chain have definite localizations in the 
mitochondrion. 

Fig. 9. The system is driven by diurnal variations in D and at steady state it follows the Lissajous curve best seen in 
the 06:00 figure as an oval, brown ring. At time 00:00, 06:00, 12:00 or 18:00 Q is reduced as earlier in 20 different 
steps. For further description see text. 
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   Increasing the size of a cogwheel will just make 
it turn slower, while the total flow is unchanged. 
If, on the other hand, the cogwheel in question is 
rate limiting, an increase, implemented by the 
variable Q, will also increase the total flow.  
   Fig. 3. Illustrates how difficult it is clinically to 
predict the effect of damage on a cellular level. 
The sharp border and the oscillations make a 
prediction based on clinical data complicated.  
   Use of statistical measures is also problematic. 
Even in the simple system with two variables, 
the complex borderline in Fig. 5 demonstrates 
that either a substantial analysis or a very large 
number of measurements is necessary just to 
predict the borderline approximately. 
   In vivo, the system is multidimensional, the 
borderline much more complex, and there is a 
certain plasticity in the nerve system (Watts et 
al 2018). But it should not be impossible to find 
a set of biomarkers that is able to predict the 
outcome based on an analysis like the 
presented. 

D1: An increased energy drain, D, with a 
constant ATP production results in a decreased 
A=ATP/ADP ratio. This slows the maintenance 
of the cogwheel and makes the system more 
fragile. The hurdle is both the finite supply of 
nutrients, oxygen etc., and the fact that if just one 
of the cogwheels meets its maximum rotation 
rate, it limits the entire system.  
   The effect can be minimized by an acute 
reduction in the energy drain as in Fig. 7. On a 
longer time scale, the cell will increase the 
number of mitochondria. With the same total 
energy expenditure, this will increase the 
ATP/ADP ratio and thereby facilitate both the 
energy expenditure and the repair processes.  
   Looking at the balance between energy 
expenditure and blood supply, the findings 
demonstrate that restoring the blood supply 
may be insufficient, if the energy load on the cell 
is high. Precisely how this may influence the 
clinical guidelines is unclear. 
D varying: The findings in Fig. 8 may seem 
surprising. If the normalized energy load, D, 
goes too fast from 1 to 3, the cell may be 
damaged. The background is the balance 
between the movement of the borderline and 
the movement of the point (E, Q) as a function of 
D and time. The change in D makes the border 

move from left and below the stable point (1, 1) 
to the border for D=3, which is left of the stable 
point (1.679, 1.828), but to the right of (1, 1).  
   The result is that both borderline and (E, Q) 
move towards their final state, but if the 
borderline overtakes the moving (E, Q), the 
stable point becomes out of reach, and the 
solution moves down to (0, 0). In this way, the 
result is a chase between two processes, and if 
the moving (E, Q) can keep the borderline 
behind it, the end result is stable. 
   The findings must be seen on the background 
that the energy level of a nerve cell is rather 
constant (Herculano-Houzel 2011), and that the 
level may only change 10-20% with normal 
activity (Lin et al. 2010). In this context the used 
change of 3 times is much. 

Diurnal variations: There is an overweight of 
stroke taking place in the morning. Fig. 10 
shows the results of a meta-analysis on 11816 
patients from 30 trials (Elliot 1998). The bars 
show the percentage of stroke onset in the 
shown time intervals.  
   The results accord with Fig. 9, probably 
because some cell damage is necessary for the 
diagnosis of stroke. But it must be noticed that 
Eliot’s results include the underlying vascular 
events. 
   The change in D in the hours after the stroke is 
more important than the D value at the onset of 
 the stroke. A stroke in the morning is quite 
severe, while one in the evening appears 
harmless, because the cell is passing into a silent 
period.  

Fig. 10. Diurnal variation of stroke onset. Data from 
Elliot, 1998. 
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Appendix: 

The appendix gives a description of the model 
and the normalization of the variables. 
 
Energi production and drain: The energy-rich 
substances (ATP, PCr etc.) are treated as one: 
ATP, and the energy-low as one: ADP. With 
constant nutrition level, the ATP production of 
the cell depends on the number of 
mitochondrial sites (cogwheel sets) and their 
rotation speed. While the number of active sites 
may change after the hypoxia, the rotation 
speed depends mainly on the energy use 
(cogwheel 5). 
   The ATP use is regarded as two coupled 
reactions: Hydrolysis of ATP to ADP with 
liberation of energy, and phosphorylation of the 
enzymes, W, which uses this energy as:  

 ATP + W→ADP + WP,  

where WP is the energy-rich form of W. Taking 
the amount of non-phosphorylated W as a 
measure of the cell’s energy demand, D, and 
assuming no saturation, the ATP use, JD, 
becomes:  

 JD=kDATPD.  

where kD is a constant.  
   Regarding ATP production (Cogwheel 4), the 
amount of active sites is called E, all rotating at 
the same speed. The speed depends on the 
balance between the concentration of ADP and 
ATP. To this comes that high D decreases ATP, 
which favors ADP. Hence, the ATP production, 
JATP, is: 

     JATP=kEEADP(1-+D/Dref),  

where the last part corrects JATP for variations in 
D. The  is a constant that depends on the actual 
push-pull state of the cogwheels and determines 
the weight of the D-correction. The Dref is the 
energy demand at the same state that kE is 
determined, typically the basic state. The use of 
 ensures that the correction is one, when 
D=Dref. Both  and kE depend to some extent also 
on the nutrition of the cell. 
   The change in ATP concentration is then: 

 
𝑑𝐴𝑇𝑃

𝑑𝑡
= 𝑘𝐸 ∙ 𝐸 ∙ 𝐴𝐷𝑃 ∙ (1 − 𝜀 + 𝜀 ∙

𝐷

𝐷𝑟𝑒𝑓
)  

                   −𝑘𝐷 ∙ 𝐷 ∙ 𝐴𝑇𝑃                                   

   As the ATP/ADP system is much faster 
(seconds) than the breakdown and repair of the 
enzymes (Anson et al 1998, Deng et al 2021), it 
is assumed to be instantaneous. The 
A=ATP/ADP ratio is used as a measure of the 
cell’s energy state is then: 

      𝐴 =
𝐴𝑇𝑃

𝐴𝐷𝑃
=

𝑘𝐸∙𝐸∙(1−𝜀+𝜀∙𝐷/𝐷𝑟𝑒𝑓)

𝑘𝐷∙𝐷
                     

      The breakdown and repair of E is described 
by the equation: 

       
𝑑𝐸

𝑑𝑡
= 𝑘𝛼 ∙ (𝑀(𝐴) ∙ 𝑄 − 𝐸),                             

where Q is the amount of enzymes etc. that 

repair the cogwheel, k is a rate constant, and 
M(A) is a function that describes the energy 
dependence of the Q-activity.  
   The Q describes the control system that keeps 
the cogwheel sites and the mitochondria 
functioning according to: 

      
𝑑𝑄

𝑑𝑡
= 𝑘𝛽 ∙ (𝑀(𝐴) ∙ 𝐹(𝐴) − 𝑄),                          

where F(A) is a negative feedback function, and 
k is a rate constant.  
 
Normalization: The system is initially in a 
steady state, i.e., dE/dt=dQ/dt=0, and to make 
the analysis more general, the variables are 
normalized by their values at the basic state, so 
initially they all equal one.  
Indexing the reference values with a “0” gives: 

     𝐸0 = 𝑀(𝐴0) ∙ 𝑄0,                                                              

     𝑄0 = 𝑀(𝐴0) ∙ 𝐹(𝐴0),                                                  

      𝐴0 =
𝑘𝐸∙𝐸0

𝑘𝐷∙𝐷0
                                                                 

where D=D0 at the basic state and Dref=D0, so 
the correction is one. 
   Marking the normalized values E=E/E0 and 
Q=Q/Q0 by a “*” gives: 

       
𝑑𝐸∗

𝑑𝑡
= 𝑘𝛼 ∙ (

𝑀(𝐴)

𝑀(𝐴0)
∙ 𝑄∗ − 𝐸∗),              

       
𝑑𝑄∗

𝑑𝑡
= 𝑘𝛽 ∙ (

𝑀(𝐴)

𝑀(𝐴0)
∙

𝐹(𝐴)

𝐹(𝐴0)
− 𝑄∗).            
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The two functions, M and F are given by: 

     𝑀(𝐴) =
𝑀𝑚𝑎𝑥∙𝐴𝑛

𝐴50
𝑛 +𝐴𝑛 ,                                                    

     𝐹(𝐴) =
𝑀𝑚𝑎𝑥∙𝐴50

𝑛

𝐴50
𝑛 +𝐴𝑛 ,                                                  

M(A) is a simple high order saturation function 
with a half value of A50. F(A) is taken to use the 
same order and ensures that a high A gives a 
small feedback and a small A, a high feedback. 
Mmax and Fmax are the maximum values of M and 
F, and it is assumed that A50 is the same for the 
two functions. 
   As Mmax and Fmax cancel out, the normalized 
functions become: 

𝑀∗(𝐴∗) =  
𝑀(𝐴)

𝑀(𝐴0)
=

𝐴𝑛

𝐴50
𝑛 +𝐴𝑛 ∙

𝐴50
𝑛 +𝐴0

𝑛

𝐴0
𝑛 =

𝐴∗
𝑛∙(1+𝐾∗

𝑛)

𝐾∗
𝑛+𝐴∗

𝑛 ,     

 𝐹∗(𝐴∗) =
𝐹(𝐴)

𝐹(𝐴0)
=

𝐴50
𝑛 +𝐴0

𝑛

𝐴50
𝑛 +𝐴𝑛 =

(1+𝐾∗
𝑛)

𝐾∗
𝑛+𝐴∗

𝑛 ,                  

where A=A/A0 and K=A50/A0. Unless specified 
otherwise, the parameters are K=0.7, n=7. The 
rate constants are taken to be k=0.5 h-1 and 
k=0.25 h-1. The constants represent a large 
spectrum of time scales and could be smaller, 
but with the simple system of two differential 
equations, it just corresponds to a scaling of 
time.  
   The variable Dref is taken to equal D0 at the 
basic state, and D is assumed not to be 
influenced by the small energy demand for the 
production of E and Q, but it may vary with time 
due to other metabolic events in the cell. 
   In the result and discussion chapters the 
parameters are all normalized, so the “*” are 
removed. 
Hill coefficient: The used Hill coefficient of 7 may 
seem rather large, but in the first place, the 
rebuilding of E includes many ATP-dependent 
processes, each of which may have a high Hill 
coefficient. The concerted action will include a 
high degree of cooperativity.  
   In the second place, the use of a Hill coefficient 
is always an approximation. Take for example a 
simple binding of n molecules of ligand, L, to a 
receptor, R: 

𝑛 ∙ 𝐿 + 𝑅 ↔ 𝐿𝑛𝑅 

This gives typically a receptor occupancy, O, of 

      𝑂 =
𝐿𝑛

𝐾𝐷
𝑛 + 𝐿𝑛

,           

where KD is a constant and n is the Hill 
coefficient. But this requires that all n ligand 
molecules hit at the same time, which is not 
probable or at least extremely rare. Instead, the 
different options, L1R, L2R …Ln-1R, occupy some 
of the receptors, and only if they break down 
much faster than LnR, the Hill expression may be 
valid (Prinz 2010). Generally, the occupancy is 
therefore: 

                                𝑂 =
𝐿𝑛

𝑃(𝐿)+𝐿𝑛,            

where P(L) is a polynomial in L up to degree n. 
   The use of n=7 is thus a compromise between 
a high degree of cooperativity in the many 
actions of ATP and the moderating effect of the 
polynomial. 
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